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Abstract

Despite the performance drawbacks of Ethernet, it still possesses a sizable footprint in cluster computing because of

its low cost and backward compatibility to existing Ethernet infrastructure. In this paper, we demonstrate that these

performance drawbacks can be reduced (and in some cases, arguably eliminated) by coupling TCP offload engines

(TOEs) with 10-Gigabit Ethernet (10GigE).

Although there exists significant research on individual network technologies such as 10GigE, InfiniBand (IBA),

and Myrinet; to the best of our knowledge, there has been no work that compares the capabilities and limitations of

these technologies with the recently introduced 10GigE TOEs in a homogeneous experimental testbed. Therefore, we

present performance evaluations across 10GigE, IBA, and Myrinet (with identical cluster-compute nodes) in order to

enable a coherent comparison with respect to the sockets interface. Specifically, we evaluate the network technologies

at two levels: (i) a detailed micro-benchmark evaluation and (ii) an application-level evaluation with sample appli-

cations from different domains, including a bio-medical image visualization tool known as the Virtual Microscope,

an iso-surface oil reservoir simulator, a cluster file-system known as the Parallel Virtual File-System (PVFS), and a

popular cluster management tool known as Ganglia. In addition to 10GigE’s advantage with respect to compatibility

to wide-area network infrastructures, e.g., in support of grids, our results show that 10GigE also delivers performance

that is comparable to traditional high-speed network technologies such as IBA and Myrinet in a system-area network

environment to support clusters and that 10GigE is particularly well-suited for sockets-based applications.
∗This work was supported by Los Alamos National Laboratory contract W-7405-ENG-36, DOE Grant #DE-FC02-

01ER25506, NSF grants #CCR-0204429 and #CCR-0311542, and technical and equipment support from Chelsio Communi-
cations and Foundry Networks.
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1 Introduction

Three years ago, virtuallynoneof the supercomputers in the Top500 Supercomputer List [3] used Gigabit

Ethernet (GigE) [18]. Today, GigE- and Myrinet-based [12] clusters dominate the Top500 with 35.2%

and 38.6% shares, respectively.1 Furthermore, Gigabit Ethernet is even more pervasive in theTop500 list

than the list explicitly indicates as many of the Top500 supercomputers also have Ethernet-based control or

management networks.

What are the drivers of the above Ethernet trend? Ease of deployment and cost over raw performance. Eth-

ernet is already the ubiquitous interconnect technology for wide-area networks (WANs) in support of grids

because it leverages the legacy Ethernet/IP infrastructure, which has been around since the mid-1970s. Its

ubiquity will become even more prominent as long-haul network providers move away from the more ex-

pensive (but Ethernet-compatible) SONET technology towards 10-Gigabit Ethernet (10GigE) backbones,

as recently demonstrated by the longest continuous 10GigE connection between Tokyo, Japan and Geneva,

Switzerland via Canada and the United States [16] in late 2004. Researchers from Japan, Canada, the

United States, and Europe completed an 18,500-km 10GigE connection between the Japanese Data Reser-

voir project in Tokyo and the CERN particle physical laboratory in Geneva; a connection that used 10GigE

WAN PHY technology to set-up alocal-area networkat the University of Tokyo that appeared to include

systems at CERN, which were 17 time zones away.

Although GigE is far behind the curve with respect to networkperformance, 10GigE can bridge the perfor-

mance gap to exotic network technologies while achieving the ease of deployment and eventually the cost

of GigE. The IEEE 802.3-ae 10-Gb/s standard already ensuresinteroperability with existing Ethernet/IP

infrastructures, and the manufacturing volume of 10GigE isalready driving costs down exponentially, just

as it did for Fast Ethernet and Gigabit Ethernet.2 What remains to be demonstrated is if 10GigE can bridge

the performance gap to technologies such as InfiniBand (IBA)[5] and Myrinet.

Unfortunately, with several high-performance networks being introduced into the HPC market, each ex-

posing its own communication interface, characterizing theperformance gapbetween these networks is no

longer a straightforward task. This issue is not unique to only lower-level performance characterization; it

is also a major issue for application developers. Due to the increasingly divergent communication interfaces

1With as rapidly as GigE-based clusters have grown, we expectGigE-based clusters to own a plurality of the next Top500 list
in June 2005.

2Per-port costs for 10GigE have dropped nearly ten-fold in two years.

2



www.manaraa.com

exposed by the networks, application developers demand a common interface that they can utilize in order

to achieve portability across the various networks. The Message Passing Interface (MPI) [26, 19, 13] and

the sockets interface have been two of the most popular choices towards achieving such portability. MPI

has been thede factostandard for scientific applications, while sockets has been more prominent in legacy

scientific applications as well as grid-based or heterogeneous-computing applications, file and storage sys-

tems, and other commercial applications. Because traditional sockets over host-based TCP/IP has not been

able to cope with the exponentially increasing network speeds, IBA and other network technologies recently

proposed a high-performance sockets interface, known as the Sockets Direct Protocol (SDP) [2]. SDP is

a mechanism to allow existing sockets-based applications to transparently take advantage of the hardware-

offloaded protocol stack provided by these exotic networks.As a result, Chelsio and other 10GigE vendors

have recently released adapters that deliver hardware-offloaded TCP/IP protocol stacks (popularly known

as TCP Offload Engines or TOEs) to provide high-performance support for existing sockets-based applica-

tions. In this paper, we concentrate on the sockets interface to characterize theperformance gapbetween

10GigE and other exotic networks such as IBA and Myrinet.

Many researchers, including ourselves, have evaluated thebenefits of sockets over offloaded protocol

stacks on various networks including IBA, Myrinet, etc. However, to the best of our knowledge, there has

been no work that compares and contrasts the capabilities and limitations of these technologies with the re-

cently introduced 10GigE TOEs on a homogeneous experimental testbed. In this paper, we perform several

evaluations to enable a coherent comparison between 10GigE, IBA and Myrinet with respect to the sockets

interface. In particular, we evaluate the networks at two levels: (i) a detailed micro-benchmark evaluation

and (ii) an application-level evaluation with sample applications from multiple domains, including a bio-

medical image visualization tool known as the Virtual Microscope [4], an iso-surface oil reservoir simulator

called Iso-Surface [11], a cluster file-system known as the Parallel Virtual File-System (PVFS) [30], and

a popular cluster management tool named Ganglia [1]. In addition to 10GigE’s advantage with respect to

compatibility to wide-area network infrastructures, e.g., in support of grids, our results show that 10GigE

also delivers performance that is comparable to traditional high-speed network technologies such as IBA

and Myrinet in a system-area network environment to supportclusters and that 10GigE is particularly well-

suited for sockets-based applications.

The remainder of the paper is organized as follows. In Section 2, we provide background about Protocol-
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Offload Engines (POEs) and the network interconnects used inthis paper, namely 10GigE, IBA and Myrinet.

In Section 3, we describe the approaches used by each of the networks to access their respective POEs while

maintaining the sockets interface. Finally, we present experimental results in Section 4, discuss related work

in Section 5, and conclude the paper in Section 6.

2 Background

In this section, we first provide a brief overview on hardware-offloaded protocol stacks, known as Protocol-

Offload Engines (POEs), provided by networks such as 10GigE,IBA, and Myrinet. Next, we briefly de-

scribe the architectures and capabilities of the aforementioned high-performance networks considered in

this paper.

2.1 Overview of Protocol Offload Engines

Traditionally, the processing of protocols such as TCP/IP is accomplished via software running on the host

CPU. As network speeds scale beyond a gigabit per second (Gbps), the CPU becomes overburdened with

the large amount of protocol processing required. Resource-intensive memory copies, checksum computa-

tion, interrupts, and reassembly of out-of-order packets put a tremendous amount of load on the host CPU.

In high-speed networks, the CPU has to dedicate more cycles to handle the network traffic than to the appli-

cation(s) it is running. Protocol-Offload Engines (POEs) are emerging as a solution to limit the processing

required by CPUs for networking (e.g., see Figure 1).

The basic idea of a POE is to offload the processing of protocols from the host CPU to the network adapter.

A POE can be implemented with a network processor and firmware, specialized ASICs, or a combination

of both. High-performance networks such as IBA and Myrinet provide their own protocol stacks that are

offloaded onto the network-adapter hardware. Many 10GigE vendors, on the other hand, have chosen to

offload the ubiquitous TCP/IP protocol stack in order to maintain compatibility with legacy Ethernet/IP

infrastructure, particularly over the wide-area network (WAN) [17]. Consequently, this offloading is more

popularly known as a TCP Offload Engine (TOE).

As a precursor to complete protocol offloading, many operating systems incorporated support for fea-

tures to offload specific compute-intensive features from the host to the underlying network adapter, e.g.,

TCP/UDP and IP checksum offload. But as network speeds increased beyond 100 Mbps, the need for further

protocol processing offload became a clear requirement, e.g., offloading TCP/IP and UDP/IP segmentation
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Figure 1. Protocol Offload Engines

onto the network adapter [21]. With the advent of multi-gigabit networks, the host-processing requirements

became so burdensome that they ultimately led to adapter solutions withcompleteprotocol offload.

2.2 Overview of High-Speed Networks

In this section, we provide an overview of the high-speed networks that are used in this work: 10GigE,

IBA, and Myrinet.

2.2.1 10-Gigabit Ethernet

The Chelsio T110, as shown in Figure 2, is a PCI-X network adapter capable of supporting full TCP/IP

offloading from a host system at line speeds of 10 Gbps. The adapter consists of multiple components:

(i) the terminator which provides the basis for offloading, (ii) separate memory systems each designed for

holding particular types of data, and (iii) a MAC and XPAC optical transceiver for the physical transfer of

data over the line.

Context (CM) and Packet (PM) Memory are available on-board as well as a 64 KB EEPROM. A 4.5 MB

TCAM is used to store a Layer 3 routing table and can filter out invalid segments for non-offloaded connec-

tions. The T110 also has a Terminator ASIC, which is the core of the offload engine, capable of handling

64,000 connections at once, with a setup and tear-down rate of about 3 million connections per second.

Memory Layout: Two types of on-board memory are available to the terminator. 256 MB of EFF FCRAM

CM stores TCP state information for each offloaded and protected non-offloaded connection as well as a

Layer 3 routing table and its associated structures. Each connection uses 128 bytes of memory to store state

information in a TCP control block (TCB). For payload (packets), standard ECC SDRAM (PC2700) can be
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Figure 2. Chelsio T110 Adapter Architecture

used, ranging from 128 MB to 4 GB.

Terminator Core: The terminator sits between the host and its Ethernet interface. When offloading a

TCP/IP connection, it can handle tasks such as connection management, checksums, route lookup from the

TCAM, congestion control, and most other TCP/IP processing. When offloading is not desired, a connection

can be tunneled directly to the host’s TCP/IP stack. In most cases, the PCI-X interface is used to send both

data and control messages between the host, but an SPI-4.2 interface can be used to pass data to and from a

network processor (NPU) for further processing.

The above mentioned Chelsio T110 network adapters were interconnected using a Foundry FastIron Su-

perX 10GigE switch. The SuperX switch is built with high-performance ASICs to deliver high-density

Gigabit Ethernet that can include Power over Ethernet and 10-Gigabit Ethernet. The SuperX switch comes

with advanced layer 2 features and several layer 3 features.The 4.5µs flow-through latency offered by this

switch is extraordinarily impressive given that it is a store-and-forward switch. On the other hand, the less

general Fujitsu XG1200 switch uses virtual cut-through to achieve a 0.5µs flow-through latency.

2.2.2 InfiniBand

The InfiniBand Architecture (IBA) [5] defines a switched network fabric for interconnecting processing

nodes and I/O nodes. It provides the communication and management infrastructure for inter-processor

communication and I/O. In an IBA network, processing nodes and I/O nodes are connected to the fabric via

Host-Channel Adapters (HCAs) that reside in the processingor I/O nodes.

Our IBA platform consists of InfiniHost HCAs and an InfiniScale switch from Mellanox [25]. InfiniS-

cale is a full wire-speed switch with eight 10-Gbps ports. There is also support for link packet buffering,

inbound and outbound partition checking, and auto-negotiation of link speed. The switch has an embed-
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ded RISC processor for exception handling, out-of-band data management support, and counter support for

performance monitoring. The InfiniHost MT23108 HCA connects to the host through the PCI-X bus. It

allows for a bandwidth of up to 10 Gbps over its ports. Memory protection along with address translation

is implemented in hardware. The HCA supports on-board DDR memory up to 1GB.

2.2.3 Myrinet

Myrinet [12] is a high-speed interconnect technology usingwormhole-routed crossbar switches to connect

all the NICs. GM [28] is the low-level messaging layer for Myrinet clusters. It provides protected user-level

access to the network interface card and ensures reliable and in-order message delivery. GM provides a

connectionless communication model to the upper layer. There is no connection setup phase between ports

before the communication, and each port can send messages toor receive messages from any other port on

a remote node.

Our Myrinet network consists of Myrinet-2000 ‘E’ cards connected by a Myrinet-2000 switch. Each card

has two ports with the link bandwidth for each port being 2 Gbps in each direction. Thus the network card

can support an aggregate of 4 Gbps in each direction using both the ports. The Myrinet-2000 switch is a

16-port crossbar switch. The network interface card connects to a 133-MHz/64-bit PCI-X interface on the

host. It has a programmable Lanai-XP processor running at 333 MHz with 2-MB on-board SRAM. The

Lanai processor on the NIC can access host memory via the PCI-X bus through the DMA controller.

3 Interfacing with POEs

Since the Linux kernel does not currently support Protocol Offload Engines (POEs), researchers have taken

a number of approaches to enable applications to interface with POEs. The two predominant approaches

are high-performance sockets implementations such as the Sockets Direct Protocol (SDP) and TCP Stack

Override.

3.1 High-Performance Sockets

High-performance sockets are pseudo-sockets implementations that are built around two design goals: (a)

to provide a smooth transition to deploy existing sockets-based applications on clusters connected with net-

works using offloaded protocol stacks and (b) to sustain mostof the performance provided by the networks

by utilizing the offloaded stack for protocol processing. These pseudo-sockets layers essentially try to over-
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ride the existing kernel-based sockets layer and force the data to be transferred directly to the offloaded

protocol stack (see Figure 3a). The Sockets Direct Protocol(SDP) is an industry-standard specification for

high-performance sockets implementations.

Application

TCP

IP

Device Driver

Network Adapter

Network Layer

Transport Layer
Offloaded

Offloaded

Sockets Layer
Traditional High Performance

Sockets Layer

Application

Sockets Layer

IP

Device Driver

Network Adapter

Network Layer

Transport Layer
Offloaded

Offloaded

Traditional TCP TOM

Figure 3. Interfacing with POEs: (a) High Performance Socke ts and (b) TCP Stack Override

The advantage of this approach is that the TCP/IP stack in thekernel does not have to be touched at all since

all the data communication calls such asread(), write(), etc., are trapped as soon as the application

calls them and directly mapped to the offloaded protocol stack. On the other hand, the disadvantage of

this approach is that several aspects that are handled by thesockets layer (e.g., buffer management for data

retransmission and pinning of buffers) now have to handled by the high-performance sockets layer resulting

in a duplication of all these features in the SDP implementation. IBA and Myrinet use this approach to

allow sockets-based applications to utilize their offloaded protocol stacks.

3.2 TCP Stack Override

This approach retains the kernel-based sockets layer. However, the TCP/IP stack is overridden and the data

is pushed directly to the offloaded protocol stack in order tobypass the host TCP/IP stack implementation

(see Figure 3b). The Chelsio T110 adapter studied in this paper follows this approach. One of Chelsio’s

goals in constructing a TCP offload engine (TOE) was to keep itfrom being too invasive to the current

structure of the system. By adding kernel hooks inside the TCP/IP stack and avoiding actual code changes,

the current TCP/IP stack remains usable for all other network interfaces, including loopback.

The software architecture used by Chelsio essentially has two components: the TCP offload module (TOM)

and the offload driver.
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TCP Offload Module: As mentioned earlier, the Linux operating system lacks support for TOE devices.

Chelsio provides a framework of a TCP offload module (TOM) anda thin layer known as thetoedevwhich

decides whether a connection needs to be handed over to the TOM or to the traditional host-based TCP/IP

stack. The TOM can be thought of as the upper layer of the TOE stack. It is responsible for implementing

portions of TCP processing that cannot be done on the TOE (e.g., TCP TIME WAIT processing). The

state of all offloaded connections is also maintained by the TOM. Not all of the Linux network API calls

(e.g., tcpsendmsg, tcprecvmsg) are compatible with offloading to the TOE. Such a requirement would

result in extensive changes in the TCP/IP stack. To avoid this, the TOM implements its own subset of

the transport-layer API. TCP connections that are offloadedhave certain function pointers redirected to the

TOM’s functions. Thus, non-offloaded connections can continue through the network stack normally.

Offload Driver: The offload driver is the lower layer of the TOE stack. It is directly responsible for

manipulating the terminator and its associated resources.TOEs have a many-to-one relationship with a

TOM. A TOM can support multiple TOEs as long as it provides allfunctionality required by each. Each

TOE can only be assigned one TOM. More than one driver may be associated with a single TOE device. If a

TOE wishes to act as a normal Ethernet device (capable of onlyinputting/outputting Layer 2 level packets),

a separate device driver may be required.

4 Experimental Evaluation

In this section, we evaluate the performance achieved by thethree networks, namely 10GigE, IBA and

Myrinet, at two different levels: (i) a detailed micro-benchmark evaluation, as described in Section 4.2

and (ii) an application-level evaluation, as described in Section 4.3, with sample applications from multiple

domains, including a bio-medical image visualization toolcalled the Virtual Microscope, an iso-surface

oil reservoir simulator known as Iso-Surface, a cluster file-system named the Parallel Virtual File-System

(PVFS) and a popular cluster management tool known as Ganglia.

4.1 Experimental Testbed

We used the following experimental testbed for the evaluations — a cluster system consisting of four nodes

built around SuperMicro SUPER X5DL8-GG motherboards with ServerWorks GC LE chipsets, which in-

clude 64-bit, 133-MHz PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors with a 512-kB
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L2 cache and a 533-MHz front-side bus and 2 GB of 266-MHz DDR SDRAM. We used the RedHat 9.0

Linux distribution and the Linux-2.4.25smp kernel.org kernel. Each node was equipped with the 10GigE,

IBA and Myrinet networks. The 32-bit Xeon processors and the2.4 kernel used in the testbed represent a

large installation base; thus, the results described here would be most relevant for researchers using such

testbeds to weigh the pros and cons of each network before adopting them.

10GigE: The 10GigE network was based on Chelsio T110 10GigE adapterswith TOEs connected to a

16-port SuperX Foundry switch. The driver version used on the network adapters is 1.2.0, and the firmware

on the switch is version 2.2.0. For optimizing the performance of the 10GigE network, we have modified

several settings on the hardware as well as the software systems, e.g., (i) increased PCI burst size to 2 KB,

(ii) increased send and receive socket buffer sizes to 512 KBeach, (iii) increased window size to 10 MB

and (iv) enabled hardware flow control to minimize packet drops on the switch. Detailed descriptions about

these optimizations and their impact can be found in our previous work [20, 17, 7].

InfiniBand: The InfiniBand (IBA) network was based on Mellanox InfiniHostMT23108 dual-port 4x

HCA adapters through an InfiniScale MT43132 twenty-four 4x-port completely non-blocking InfiniBand

switch. The adapter firmware version is fw-23108-rel-32 0-rc4-build-001 and the software stack was based

on the Voltaire IBHost-3.0.1-16 stack.

Myrinet: For SDP/Myrinet, we used the latest publicly available implementations (version 1.7.9). Myri-

com, the vendor for the Myrinet networks, is currently working on a next-generation SDP implementation

over their new MX drivers. However, without access to this implementation, we had to stick with the pub-

licly available 1.7.9 version. According to discussion with Myricom, they see better performance for their

next-generation SDP implementation over their MX drivers as compared to the 1.7.9 implementation; thus,

when these new drivers are out, we can expect the performanceof SDP/Myrinet shown in this section to

improve further.

4.2 Micro-Benchmark Evaluation

In this section, we perform micro-benchmark evaluations ofthe three networks over the sockets interface.

We perform evaluations in two sub-categories. First, we perform evaluations based on a single connection

measuring the point-to-point latency, uni-directional bandwidth, and the bi-directional bandwidth. Second,

we perform evaluations based on multiple connections usingthe multi-stream bandwidth test, hot-spot test,
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and fan-in and fan-out tests.

4.2.1 Single Connection Micro-Benchmarks

Figures 4 and 5 show the basic single-connection performance of the 10GigE TOE as compared to SDP/IBA

and SDP/Myrinet.
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Figure 4. Single Connection Micro-Benchmarks: (a) Latency and (b) Uni-directional Bandwidth

Ping-Pong Latency Micro-Benchmark: Figure 4a shows the comparison of the ping-pong latency for

the different networks.

IBA and Myrinet provide two kinds of mechanisms to inform theuser about the completion of data trans-

mission or reception, namely polling and event-based. In the polling approach, the sockets implementation

has to continuously poll on a predefined location to check whether the data transmission or reception has

completed. This approach is good for performance but requires the sockets implementation to continuously

monitor the data-transfer completions, thus requiring a huge amount of CPU resources. In the event-based

approach, the sockets implementation requests the networkadapter to inform it on a completion and sleeps.

On a completion event, the network adapter wakes this process up through an interrupt. While this approach

is more efficient in terms of the CPU required since the application does not have to continuously monitor

the data transfer completions, it incurs an additional costof the interrupt. In general, for single-threaded

applications the polling approach is the most efficient while for most multi-threaded applications the event-

based approach turns out to perform better. Based on this, weshow two implementations of the SDP/IBA

and SDP/Myrinet stacks (event-based and polling-based); the 10GigE TOE supports only the event-based

approach.

As shown in the figure, SDP/Myrinet achieves the lowest small-message latency for both the polling as well

as event-based models. For the polling-based models, SDP/Myrinet achieves a latency of 6.68µs compared
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to a 8.25µs achieved by SDP/IBA. For the event-based models, SDP/Myrinet achieves a latency of 11.33µs

compared to the 17.7µs and 24.4µs achieved by 10GigE and SDP/IBA, respectively. However, asshown in

the figure, for medium-sized messages (larger than 2 kB for event-based and 4 kB for polling-based), the

performance of SDP/Myrinet deteriorates. For messages in this range, SDP/IBA performs the best followed

by the 10GigE TOE, and SDP/Myrinet, respectively. We shouldnote that the Foundry SuperX 10GigE

switch that we used has approximately a 4.5-µs flow-through latency, which is amazing for a store-and-

forward switch. By using the less general but virtual cut-through Fujitsu XG1200 switch, the flow-through

latency is only 0.5µs, resulting in a 10GigE end-to-end latency of only 13.7µs.

Unidirectional Bandwidth Micro-Benchmark: For the uni-directional bandwidth test, the 10GigE TOE

achieves the highest bandwidth at close to 6.4 Gbps comparedto the 5.4 Gbps achieved by SDP/IBA (both

polling- as well as event-based) and the 3.75 Gbps achieved by SDP/Myrinet (polling- as well as event-

based)3. The drop in the bandwidth for SDP/Myrinet at 512-kB messagesize, is attributed to the high

dependency of the implementation of SDP/Myrinet on L2-cache activity. Even 10GigE TOE shows a slight

drop in performance for very large messages, but not as drastically as SDP/Myrinet. Our systems use

a 512-KB L2-cache and a relatively slow memory (266-MHz DDR SDRAM) which causes the drop to

be significant. For systems with larger L2-caches, L3-caches, faster memory speeds or better memory

architectures (e.g., NUMA), this drop can be expected to be smaller. Further, it is to be noted that the

bandwidth for all networks is the same irrespective of whether a switch is used or not; thus the switches do

not appear to be a bottleneck for single-stream data transfers.

Bidirectional Bandwidth Micro-Benchmark: Similar to the unidirectional bandwidth test, the 10GigE

TOE achieves the highest bandwidth (close to 7 Gbps) followed by SDP/IBA at 6.4 Gbps and SDP/Myrinet

at 3.5 Gbps. 10GigE TOE and SDP/IBA seem to perform quite poorly with respect to the theoretical peak

throughput achievable (20Gbps bidirectional). This is attributed to the PCI-X buses to which these network

adapters are connected. The PCI-X bus (133 MHz/64 bit) is a shared network I/O bus that allows only a

theoretical peak of 8.5 Gbps for traffic in both directions. Further, as mentioned earlier, the memory used in

our systems is relatively slow (266-MHz DDR SDRAM). These, coupled with the header and other traffic

3On the Opteron platform, we see a better performance for 10GigE of up to 7.6Gbps. We also expect a better performance
for the other networks on this platform, but unfortunately our current testbed does not allow this comparison on such a platform
at this time. Further, with 32-bit Xeons being the largest installation base today, we feel that the numbers on our current platform
might be more relevant to the community.
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overheads, causes these networks to be saturated much belowthe theoretical bandwidth that the network

can provide. For SDP/Myrinet, we noticed that the implementation is quite unstable and has not provided

us with much success in getting performance numbers for message sizes larger than 64KB. Also, the peak

bandwidth achievable is only 3.5 Gbps which is actually lessthan the unidirectional bandwidth that this

implementation provides.
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Figure 5. Bi-directional Bandwidth

4.2.2 Multiple Connection Micro-Benchmarks

Figures 6 and 7 show the multi-connection experiments performed with the three networks. These experi-

ments demonstrate scenarios where either a single process or multiple processes on the same physical node

open a number of TCP/IP connections. These tests are designed to understand the performance of the three

networks in scenarios where the network has to handle several TCP/IP connections simultaneously.

It is to be noted that for multi-threaded applications the polling-based approach performs very badly due to

its high CPU usage; therefore these results are not shown in this paper, and we stick to only the event-based

approach for these applications.

Multi-Stream Bandwidth: Figure 6a illustrates the aggregate throughput achieved bytwo nodes per-

forming multiple instances of uni-directional throughputtests. Because the performance of SDP/Myrinet

seems to be a little inconsistent, it is difficult to characterize the performance of Myrinet with respect to the

other networks, but we have observed that SDP/Myrinet generally achieves a throughput of about 3.15 to

3.75 Gbps. 10GigE TOE and SDP/IBA, on the other hand, quite consistently achieve throughputs around

5.9 to 6.2 Gbps with 10GigE performing slightly better most of the time.

Hot-Spot Latency: Figure 6b shows the impact of multiple connections on small-message transactions.

In this experiment, a number of client nodes perform a point-to-point latency test with the same server
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Figure 6. Multi-Connection Micro-Benchmarks: (a) Multi-S tream Bandwidth and (b) Hot-Spot Latency

forming a hot-spot on the server. We performed this experiment with one node acting as a server node

and the other three dual-processor nodes hosting a total of 12 client processes. The clients are alloted

in a cyclic manner, so three clients refers to having one client process on each of the three nodes, six

clients refers to having two client processes on each of the three nodes, and so on. As shown in the figure,

SDP/Myrinet performs the best when there is just one client followed by 10GigE TOE and SDP/IBA,

respectively. However, as the number of clients increase, 10GigE TOE and SDP/IBA scale quite well

while the performance of SDP/Myrinet deteriorates significantly; for 12 clients, for example, SDP/Myrinet

provides the worst performance of the three while the 10GigETOE performs significantly better than the

other two. This shows that the lookup time for connection-related data structures is performed efficiently

enough on the 10GigE TOE and SDP/IBA implementations and that they scale quite well with an increasing

number of connections.

Fan-Out and Fan-In tests: With the hot-spot test, we have shown that the lookup time forconnection-

related data structures is quite efficient on the 10GigE TOE and SDP/IBA implementations. However, the

hot-spot test does not stress the other resources on the network adapter such as management of memory

regions for buffering data during transmission and reception. In order to stress such resources, we have

designed two other tests, namely fan-out and fan-in. In boththese tests, one server process carries out uni-

directional throughput tests simultaneously with a numberof client threads. The difference being that in

a fan-out test, the server pushes data to the different clients (stressing the transmission path in the imple-

mentation), and in a fan-in test, the clients push data to theserver process (stressing the receive path in the

implementation). Figure 7 shows the performance of the three networks for both these tests. As shown in
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the figure, for both the tests, SDP/IBA and SDP/Myrinet scalequite well with increasing number of clients.

10GigE TOE, on the other hand, performs quite well for the fan-in test; however, we see a slight drop in its

performance for the fan-out test with increasing clients.
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Figure 7. Multi-Connection Micro-Benchmarks: (a) Fan-in a nd (b) Fan-out

4.3 Application-Level Evaluation

In this section, we evaluate the performance of different applications across the three network technologies.

4.3.1 Data-Cutter Overview and Evaluation

In this section, we first provide a brief overview about Data-Cutter and then provide some experimental

results evaluating the performance of the data-cutter library on each of the three networks (10GigE, IBA

and Myrinet).

Overview of Data-Cutter: Data-Cutter is a component-based framework [10, 15, 29, 31]that has been

developed by University of Maryland in order to provide a flexible and efficient run-time environment for

data-intensive applications on distributed platforms. The Data-Cutter framework implements a filter-stream

programming model for developing data-intensive applications. In this model, the application processing

structure is implemented as a set of components, referred toasfilters, that exchange data through astream

abstraction. Filters are connected vialogical streams. A streamdenotes a unidirectional data flow from

one filter (i.e., the producer) to another (i.e., the consumer). A filter is required to read data from its input

streams and write data to its output streams only. The implementation of the logical stream uses the sockets

interface for point-to-point stream communication. The overall processing structure of an application is

realized by afilter group, which is a set of filters connected through logical streams.When a filter group
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is instantiated to process an application query, the run-time system establishes socket connections between

filters placed on different hosts before starting the execution of the application query. Filters placed on the

same host execute as separate threads. An application queryis handled as aunit of work(UOW) by the filter

group. An example is a visualization of a dataset from a viewing angle. The processing of a UOW can be

done in a pipelined fashion; different filters can work on different data elements simultaneously, as shown

in Figure 8.

P C
uow 0uow 1uow 2

buf buf buf buf
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host
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4
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(a) (b)

Figure 8. Data-Cutter stream abstraction and support for co pies. (a) Data buffers and end-of-work
markers on a stream. (b) P,F,C filter group instantiated usin g transparent copies.

Several data-intensive applications have been designed and developed using the data-cutter run-time frame-

work. In this paper, we use two such applications, namely theVirtual Microscope (VM) and the Iso-Surface

oil-reservoir simulation (ISO) application, for evaluation purposes.

Virtual Microscope (VM):VM is a data-intensive digitized microscopy application. The software sup-

port required to store, retrieve, and process digitized slides to provide interactive response times for the

standard behavior of a physical microscope is a challengingissue [4, 14]. The main difficulty stems from

the handling of large volumes of image data, which can range from a few hundreds of megabytes (MB)

to several gigabytes (GB) per image. At a basic level, the software system should emulate the use of a

physical microscope, including continuously moving the stage and changing magnification. The processing

of client queries requires projecting high-resolution data onto a grid of suitable resolution and appropriately

composing pixels mapping onto a single grid point.

Iso-Surface Oil-Reservoir Simulation (ISO):Computational models for seismic analysis of oil reservoirs

simulate the seismic properties of a reservoir by using output from oil-reservoir simulations. The main ob-

jective of oil-reservoir modeling is to understand the reservoir properties and predict oil production to opti-

mize return on investment from a given reservoir, while minimizing environmental effects. This application

demonstrates a dynamic, data-driven approach to solve optimization problems in oil-reservoir management.
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Output from seismic simulations are analyzed to investigate the change in geological characteristics of reser-

voirs. The output is also processed to guide future oil-reservoir simulations. Seismic simulations produce

output that represents the traces of sound waves generated by sound sources and recorded by receivers on

a three-dimensional grid over many time steps. One analysisof seismic datasets involves mapping and

aggregating traces onto a 3-dimensional volume through a process called seismic imaging. The resulting

three-dimensional volume can be used for visualization or to generate input for reservoir simulations.
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Figure 9. Data-Cutter Applications: (a) Virtual Microscop e (VM) and (b) ISO-Surface (ISO)

Evaluating Data-Cutter: Figure 9a compares the performance of the VM application over each of the

three networks (10GigE, IBA, Myrinet). As shown in the figure, SDP/IBA outperforms the other two

networks. This is primarily attributed to the worse latencyfor medium-sized messages for 10GigE TOE

and SDP/Myrinet (shown in Figure 4a). Though the VM application deals with large datasets (each image

was about 16MB), the dataset is broken down into small Unit ofWork (UOW) segments that are processed in

a pipelined manner. This makes the application sensitive tothe latency of medium-sized messages resulting

in better performance for SDP/IBA compared to 10GigE TOE andSDP/Myrinet.

Figure 9b compares the performance of the ISO application for the three networks. The dataset used was

about 64 MB in size. Again, the trend with respect to SDP/IBA is similar to that of the VM application with

SDP/IBA outperforming the other two networks. However, it is surprising that SDP/Myrinet outperforms

the 10GigE TOE for nearly all dataset sizes, especially since the ISO application pipelines larger UOW

chunks than the VM application, and we expect the 10GigE TOE to perform better than SDP/Myrinet

from the basic latency results in Figure 4a. Preliminary evidence indicates that this might be due to the

performance of the 10GigE TOE for non-cached data4; we are investigating this behavior further.
4It is to be noted that the latency test in Figure 4a always sends data from the same buffer maximizing cache effects, while
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4.3.2 PVFS Overview and Evaluation

We also studied the performance benefits of the different networks on parallel file systems and their appli-

cations. A popular parallel file system, Parallel Virtual File System (PVFS), is used as a case study in this

work. In this section, we provide an overview of PVFS, its basic file-I/O performance and the performance

of a parallel-I/O application,mpi-tile-io.

PVFS Overview: The Parallel Virtual File System (PVFS) [30] is one of the leading parallel file systems

for Linux cluster systems today, developed jointly by Clemson University and Argonne National Lab. It

was designed to meet the increasing I/O demands of parallel applications in cluster systems. Typically, a

number of nodes in the cluster system are configured as I/O servers and one of them (either an I/O server or

a different node) as a metadata manager. Figure 10 illustrates a typical PVFS environment.

Compute
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Compute
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Node
I/O server

Node
I/O server
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Data

Data

Data
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Figure 10. A Typical PVFS Setup

PVFS achieves high performance by striping files across a setof I/O server nodes, allowing parallel ac-

cesses to the data. It uses the native file system on the I/O servers to store individual file stripes. An

I/O daemon runs on each I/O node and services requests from the compute nodes, in particular the read

and write requests. Thus, data is transferred directly between the I/O servers and the compute nodes. A

manager daemon runs on a metadata manager node. It handles metadata operations involving file permis-

sions, truncation, file stripe characteristics, and so on. Metadata is also stored on the local file system. The

metadata manager provides a cluster-wide consistent name space to applications. In PVFS, the metadata

manager does not participate in read/write operations. PVFS supports a set of feature-rich interfaces, in-

cluding support for both contiguous and noncontiguous accesses to both memory and files. PVFS can be

used with multiple APIs: a native API, the UNIX/POSIX API, MPI-IO, and an array I/O interface called

ISO always fetches files from the disk and cannot be expected to experience any cache effect whatsoever
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Multi- Dimensional Block Interface (MDBI). The presence ofmultiple popular interfaces contributes to the

wide success of PVFS in the industry.
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Figure 11. Concurrent PVFS Read/Write

Performance of Concurrent File I/O: In this test, we have evaluated the performance of PVFS concurrent

read/write operations using thepvfs-testprogram from the standard PVFS releases. For this test, an MPI

program is used to parallelize file write/read access of contiguous 2-MB data buffers from each compute

node. The native PVFS library interface is used in this test,more details of this program can be found

in [30].

Figure 11 shows PVFS file read and write performance on the different networks. We have performed two

kinds of tests for both read and write: (i) In the first test, weuse just one server; three clients simultaneously

read or write a file from/to this server, (ii) In the second test, we use three servers and stripe the file across

all three servers; a single client reads or writes the stripes from all three servers simultaneously. These two

tests are represented as legends “1S/3C” (representing oneserver and three clients) and “3S/1C” (repre-

senting three servers and one client), respectively. As shown in the figure, the 10GigE TOE considerably

outperforms the other two networks in both the tests for readas well as write. This follows the same trend as

shown by the basic bandwidth and fan-in/fan-out micro-benchmark results in Figures 4b and 7. SDP/IBA,

however, seems to achieve considerably lower performance as compared to even SDP/Myrinet (which has

a much lower theoretical bandwidth: 4 Gbps compared to the 10Gbps of IBA).

Performance of MPI-Tile-IO: MPI-Tile-IO [32] is a tile-reading MPI-IO application. It tests the per-

formance of tiled access to a two-dimensional dense dataset, simulating the type of workload that exists
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in some visualization applications and numerical applications. In our experiments, two nodes are used as

server nodes and the other two as client nodes running MPI-tile-IO processes. Each process renders a1× 2

array of displays, each with1024 × 768 pixels. The size of each element is 32 bytes, leading to a file size

of 48 MB.

We have evaluated both the read and write performance of mpi-tile-io over PVFS. As shown in Figure 12,

the 10GigE TOE provides considerably better performance than the other two networks in terms of both

read and write bandwidth. Another interesting point to be noted is that the performance of all the networks

is considerably worse in this test versus the concurrent fileI/O test; this is due to the non-contiguous data

access pattern of the MPI-tile-IO benchmark which adds significant overhead.
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Figure 12. MPI-Tile-IO over PVFS

4.3.3 Ganglia Overview and Evaluation

The third application we use to evaluate the three networks is Ganglia [1]. Ganglia is an open-source project

that grew out of the UC-Berkeley Millennium Project. It is a scalable distributed monitoring system for

high-performance computing systems such as clusters and grids. It is based on a hierarchical design targeted

at federations of clusters. It leverages widely used technologies such as XML for data representation, XDR

for compact, portable data transport, and RRDtool for data storage and visualization. It uses carefully

engineered data structures and algorithms to achieve very low per-node overheads and high concurrency.

The Ganglia system comprises of two portions. The first portion comprises of a server monitoring daemon

which runs on each node of the cluster and occasionally monitors the various system parameters including

CPU load, disk space, memory usage and several others. The second portion of the Ganglia system is a

client tool which contacts the servers in the clusters and collects the relevant information. Ganglia supports

two forms of global data collection for the cluster. In the first method, the servers can communicate with
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each other to share their respective state information, andthe client can communicate with any one server to

collect the global information. In the second method, the servers just collect their local information without

communication with other server nodes, while the client communicates with each of the server nodes to

obtain the global cluster information. In our experiments,we used the second approach.
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Figure 13. Ganglia: Cluster Management Tool

Evaluating Ganglia: Figure 13 shows the performance of Ganglia for the differentnetworks. As shown

in the figure, the 10GigE TOE considerably outperforms the other two networks by up to a factor of 11

in some cases. To understand this performance difference, we first describe the pattern in which Ganglia

works. The client node is an end node which gathers all the information about all the servers in the cluster

and displays it to the end user. In order to collect this information, the client opens a connection with each

node in the cluster and obtains the relevant information (ranging from 2 KB to 10 KB) from the nodes.

Thus, Ganglia is quite sensitive to the connection time and medium-message latency.

As we had seen in Figure 4a, 10GigE TOE and SDP/Myrinet do not perform very well for medium-sized

messages. However, the connection time for 10GigE is only about 60µs as compared to themillisec-

ond rangeconnection times for SDP/Myrinet and SDP/IBA. During connection setup, SDP/Myrinet and

SDP/IBA pre-register a set of buffers in order to carry out the required communication; this operation is

quite expensive for the Myrinet and IBA networks since it involves informing the network adapters about

each of these buffers and the corresponding protection information. This coupled with other overheads, e.g.,

state transitions (INIT to RTR to RTS) that are required during connection setup for IBA, increase the con-

nection time tremendously for SDP/IBA and SDP/Myrinet. Allin all, the connection setup time dominates

the performance of Ganglia in our experiments, resulting inmuch better performance for the 10GigE TOE.
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5 Related Work

Several researchers, including ourselves, have previously shown the capabilities of high-performance sock-

ets over protocol-offload engines. Shah et. al. from Intel were one of the first to demonstrate such capa-

bilities using Virtual Interface Architecture (VIA) basedGigaNet cLAN networks [33]. This was soon

followed by other implementations of high-performance sockets on VIA [22, 23, 9], Gigabit Ethernet [8],

Myrinet [27], InfiniBand [6], etc. However, while the literature based on these shows the advantages of us-

ing protocol offload engines compared to the host stack, there is no comparative study between the different

networks making it quite difficult for end customers to gaugethe advantages and disadvantages between the

various networks. In our work, we fill this gap by having such acomparative study on a common testbed.

We have previously done a similar study comparing MPI implementations over IBA, Myrinet and Quadrics [24].

Our current work differs from this in two aspects. First, this work is intended to help place the position of

10GigE with respect to performance and capabilities as a SANnetwork (its capabilities as a WAN network

are mostly undebated); this has not been studied as a part of the previous work on MPI. Second, this work

focuses on the sockets interface which is quickly gaining popularity with the upcoming high-performance

sockets standards such as SDP.

6 Concluding Remarks

Traditional Ethernet-based network architectures such asGigabit Ethernet (GigE) have delivered signifi-

cantly worse performance than other high-performance networks [e.g, InfiniBand (IBA), Myrinet]. In spite

of this performance difference, the low cost of the network components and their backward compatibility

with the existing Ethernet infrastructure have allowed GigE-based clusters to corner 35% of the Top500 Su-

percomputer List. With the advent of 10GigE and TCP Offload Engines (TOEs), we demonstrated that the

aforementioned performance gap can largely be bridged between 10GigE, IBA, and Myrinet via the sock-

ets interface. Our evaluations show that in most experimental scenarios, 10GigE provides comparable (or

better) performance than IBA and Myrinet. Further, for gridenvironments, where legacy TCP/IP/Ethernet

is dominant in the wide-area network, a comparison with IBA and Myrinet is practically ano showbecause

of lack of compatibility of these networks with Ethernet.

While the sockets interface is the most widely used interface for grids, file systems, storage, and other

commercial applications, the Message Passing Interface (MPI) is considered thede factostandard for scien-
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tific applications. A feasibility study of 10GigE as a system-area network is definitely incomplete without

a comparison of MPI over the various networks. However, in order to avoid diluting the paper and due to

time and space restrictions, we defer this discussion to upcoming future work.
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